4-1. Determine the internal normal force, shear force, and bending moment in the beam at points C and D. Assume the support at A is a pin and B is a roller.

Entire beam:

$$
\begin{array}{ll}
\xrightarrow[\rightarrow]{+} \sum F_{x}=0 ; & A_{x}=0 \\
C+\sum M_{A}=0 ; & B_{y}(6)-20-6(2)=0 \\
& B_{y}=5.333 \mathrm{kN}
\end{array}
$$

$$
+\uparrow \sum F_{y}=0 ; \quad A_{y}+5.333-6=0
$$

$$
A_{y}=0.6667 \mathrm{kN}
$$

Segment $A C$

$$
\begin{array}{ll}
\xrightarrow{+} \sum F_{x}=0 ; & N_{C}=0 \\
+\uparrow \sum F_{y}=0 ; & 0.6667-V_{C}=0 \\
& V_{C}=0.667 \mathrm{kN} \\
C+\sum M_{C}=0 ; & M_{C}-0.6667(1)=0 \\
& M_{C}=0.667 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Segment $D B$:

$$
\begin{array}{ll}
\stackrel{+}{\rightarrow} \sum F_{x}=0 ; & N_{D}=0 \\
+\uparrow \sum F_{y}=0 ; & V_{D}+5.333=0 \\
& V_{D}=-5.33 \mathrm{kN} \\
& \\
\varsigma+\sum M_{D}=0 ; & -M_{D}+5.333(2)-20=0 \\
& M_{D}=-9.33 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

$$
5-2-2=2
$$

4-2. Determine the internal normal force, shear force, and bending moment in the beam at points C and D. Assume the support at B is a roller. Point D is located just to the right of the $10-\mathrm{k}$ load.

Entire Beam:

$$
\begin{array}{ll}
\varsigma+\sum M_{A}=0 ; & B_{y}(30)+25-25-10(20)=0 \\
& B_{y}=6.667 \mathrm{k} \\
+\uparrow \sum F_{y}=0 ; & A_{y}+6.667-10=0 \\
& A_{y}=3.333 \mathrm{k} \\
\xrightarrow{+} \sum F_{x}=0 ; & A_{x}=0
\end{array}
$$

Segment $A C$:

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad \quad N_{C}=0
$$

$$
+\uparrow \sum F_{y}=0 ; \quad-V_{C}+3.333=0
$$

$$
V_{C}=3.33 \mathrm{k}
$$

$$
\zeta+\sum M_{C}=0 ; \quad \quad M_{C}-25-3.333(10)=0
$$

$$
M_{C}=58.3 \mathrm{k} \cdot \mathrm{ft}
$$

Segment $D B$.

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad N_{D}=0
$$

$$
+\uparrow \sum F_{y}=0
$$

$$
V_{D}+6.6667=0
$$

$$
V_{D}=-6.67 \mathrm{k}
$$

$$
\varsigma+\sum M_{D}=0 ; \quad-M_{D}+25+6.667(10)=0
$$

$$
M_{D}=91.7 \mathrm{k} \cdot \mathrm{ft}
$$

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

4-3. The boom $D F$ of the jib crane and the column $D E$ have a uniform weight of $50 \mathrm{lb} / \mathrm{ft}$. If the hoist and load weigh 300 lb , determine the internal normal force, shear force, and bending moment in the crane at points A, B, and C.

Equations of Equilibrium: For point A

$$
\stackrel{+}{\leftarrow} \sum F_{x}=0 ; \quad N_{A}=0
$$

$+\uparrow \sum F_{y}=0 ;$
$V_{A}-150-300=0$
$V_{A}=450 \mathrm{lb}$
$\zeta+\sum M_{A}=0 ;$
$-M_{A}-150(1.5)-300(3)=0$
$M_{A}=-1125 \mathrm{lb} \cdot \mathrm{ft}=-1.125 \mathrm{kip} \cdot \mathrm{ft}$
Ans.

Ans.

Ans.
Negative sign indicates that M_{A} acts in the opposite direction to that shown on FBD.

Equations of Equilibrium: For point B

$$
\pm \sum F_{x}=0 ; \quad N_{B}=0
$$

Ans.

$$
+\uparrow \sum F_{y}=0 ; \quad V_{B}-550-300=0
$$

$$
V_{B}=850 \mathrm{lb}
$$

Ans.

Ans.
Negative sign indicates that M_{B} acts in the opposite direction to that shown on FBD.
Equations of Equilibrium: For point C

$$
\pm \sum F_{x}=0 ; \quad V_{C}=0
$$

$+\uparrow \sum F_{y}=0 ;$
Ans.

$$
-N_{C}-250-650-300=0
$$

$$
N_{C}=-1200 \mathrm{lb}=-1.20 \mathrm{kip}
$$

Ans.

$$
\zeta+\sum M_{C}=0 ; \quad-M_{C}-650(6.5)-300(13)=0
$$

$$
M_{C}=-8125 \mathrm{lb} \cdot \mathrm{ft}=-8.125 \mathrm{kip} \cdot \mathrm{ft}
$$

Ans.

Negative sign indicate that N_{C} and M_{C} act in the opposite direction to that shown on FBD.
*4-4. Determine the internal normal force, shear force, and bending moment at point D. Take $w=150 \mathrm{~N} / \mathrm{m}$.

$$
\begin{array}{ll}
\varsigma+\sum M_{A}=0 ; & -150(8)(4)+\frac{3}{5} F_{B C}(8)=0 \\
& F_{B C}=1000 \mathrm{~N} \\
\xrightarrow{+} \sum F_{x}=0 ; & A_{x}-\frac{4}{5}(1000)=0 \\
& A_{x}=800 \mathrm{~N}
\end{array}
$$

$$
+\uparrow \sum F_{y}=0 ; \quad A_{y}-150(8)+\frac{3}{5}(1000)=0
$$

$$
A_{y}=600 \mathrm{~N}
$$

$\xrightarrow{+} \sum F_{x}=0 ;$
$N_{D}=-800 \mathrm{~N}$
$+\uparrow \sum F_{y}=0 ;$
$600-150(4)-V_{D}=0$
$V_{D}=0$
$\varsigma+\sum M_{D}=0 ; \quad-600(4)+150(4)(2)+M_{D}=0$

$$
M_{D}=1200 \mathrm{~N} \cdot \mathrm{~m}=1.20 \mathrm{kN} \cdot \mathrm{~m}
$$

Ans.

Ans.

Ans.

4-5. The beam $A B$ will fail if the maximum internal moment at D reaches $800 \mathrm{~N} \cdot \mathrm{~m}$ or the normal force in member $B C$ becomes 1500 N . Determine the largest load w it can support.

Assume maximum moment occurs at D;

$$
\begin{array}{ll}
C+\sum M_{D}=0 ; & M_{D}-\frac{8 w}{2}(4)+4 w(2)=0 \\
& 800=8 w \\
& w=100 \mathrm{~N} / \mathrm{m} \\
C+\sum M_{A}=0 ; & -800(4)+T_{B C}(0.6)(8)=0 \\
& T_{B C}=666.7 \mathrm{~N}<1500 \mathrm{~N} \\
& w=100 \mathrm{~N} / \mathrm{m}
\end{array}
$$

4-6. Determine the internal normal force, shear force, and bending moment in the beam at points C and D. Assume the support at A is a roller and B is a pin.

Support Reactions. Referring to the FBD of the entire beam in Fig. a,
$\varsigma+\sum M_{B}=0 ; \quad \frac{1}{2}(4)(6)(2)-A_{y}(3)=0 \quad A_{y}=8 \mathrm{kN}$

Internal Loadings. Referring to the FBD of the left segment of the beam sectioned through point C, Fig. b,

$$
\begin{array}{lll}
\xrightarrow{+} \sum F_{x}=0 ; & N_{C}=0 & \text { Ans. } \\
+\uparrow \sum F_{y}=0 ; & -\frac{1}{2}(1)(1.5)-V_{C}=0 & V_{C}=-0.75 \mathrm{kN} \\
C+\sum M_{C}=0 ; & M_{C}+\frac{1}{2}(1)(1.5)(0.5)=0 & M_{C}=-0.375 \mathrm{kN} \cdot \mathrm{~m}
\end{array} \quad \text { Ans. }
$$

Referring to the FBD of the left segment of the beam sectioned through point D, Fig. c,

$$
\begin{aligned}
\xrightarrow{+} \sum F_{x}=0 ; & N_{D}=0 \\
+\uparrow \sum F_{y}=0 ; & 8-\frac{1}{2}(3)(4.5)-V_{D}=0 \\
C+\sum M_{D}=0 ; & M_{D}+\frac{1}{2}(3)(-4.5)(1.5)-8(1.5)=0 \\
& \\
M_{D} & =1.875 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Ans.

Ans.

(b)

4-7. Determine the internal normal force, shear force, and bending moment at point C. Assume the reactions at the supports A and B are vertical.

$$
\begin{array}{ll}
\stackrel{+}{\rightarrow} \sum F_{x}=0 ; & N_{C}=0 \\
+\downarrow \sum F_{y}=0 ; & V_{C}+0.5+1.5-3.75=0 \\
& V_{C}=1.75 \mathrm{kN} \\
\zeta+\sum M_{C}=0 ; & M_{C}+0.5(1)+1.5(1.5)-3.75(3)=0 \\
& M_{C}=8.50 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Ans.

Ans.

$0.5(3)=1.5^{\mathrm{NN}} f(0.533)(3)=0.5 \mathrm{kN}$ $0.5 \mathrm{kN} / \mathrm{m}-5=\neg / M_{c} 0.853 \mathrm{kN} / \mathrm{m}$

Ans.
*4-8. Determine the internal normal force, shear force, and bending moment at point D. Assume the reactions at the supports A and B are vertical.

$$
\begin{array}{ll}
\stackrel{+}{\rightarrow} \sum F_{x}=0 ; & N_{D}=0 \\
+\uparrow \sum F_{y}=0 ; & 3.75-3-2-V_{D}=0 \\
& V_{D}=-1.25 \mathrm{kN} \\
& \\
\varsigma+\sum M_{D}=0 ; & M_{D}+2(2)+3(3)-3.75(6)=0 \\
& M_{D}=9.50 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Ans.

Ans.

Ans.

4-9. Determine the internal normal force, shear force, and bending moment in the beam at point C. The support at A is a roller and B is pinned.

Support Reactions. Referring to the FBD of the entire beam in Fig a,

$\varsigma+\sum M_{A}=0 ; \quad B_{y}(4)+5(1)-3(4)(2)=0 \quad B_{y}=4.75 \mathrm{kN}$
$\xrightarrow{+} \sum F_{x}=0 ; \quad B_{x}=0$

Internal Loadings. Referring to the FBD of the right segment of the beam sectioned through point c, Fig. b,
$\xrightarrow{+} \sum F_{x}=0 ;$
$N_{C}=0$
Ans.
$+\uparrow \sum F_{y}=0 ; \quad V_{C}+4.75-3(2)=0 \quad V_{C}=1.25 \mathrm{kN} \quad$ Ans
$\zeta+\sum M_{C}=0 ; \quad 4.75(2)-3(2)(1)-M_{C}=0 \quad M_{C}=3.50 \mathrm{kN} \cdot \mathrm{m}$
Ans.

4-10. Determine the internal normal force, shear force, and bending moment at point C. Assume the reactions at the supports A and B are vertical.

Ans.

Ans.

Ans.

Negative sign indicates that V_{C} acts in the opposite direction to that shown on FBD.

4-11. Determine the internal normal force, shear force, and bending moment at points D and E. Assume the reactions at the supports A and B are vertical.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Negative sign indicates that M_{E} acts in the opposite direction to that shown on FBD.
*4-12. Determine the shear and moment throughout the beam as a function of x.

Support Reactions: Referring to the FBD of the entire beam in Fig. a,
$C+\sum M_{A}=0 ; \quad N_{B}(L)-P a=0 \quad N_{B}=\frac{P a}{L}$
$\zeta+\sum M_{B}=0 ; \quad P b-A_{y}(L)=0 \quad A_{y}=\frac{P b}{L}$
$\xrightarrow{+} \sum F_{x}=0 ; \quad A_{x}=0$

Internal Loading: For $0 \leq x<a$, refer to the FBD of the left segment of the beam in Fig. b.

$$
\begin{array}{ll}
+\uparrow \sum F_{y}=0 ; & \frac{P b}{L}-V=0
\end{array} \quad V=\frac{P b}{L}, ~\left(M-\frac{P b}{L} x=0 \quad M=\frac{P b}{L} x . ~ \$\right.
$$

For $a<x \leq L$, refer to the FBD of the right segment of the beam in Fig. c.

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad V+\frac{P a}{L}=0 \quad V=-\frac{P a}{L} \\
\varsigma+\sum M_{O}=0 ; \quad \frac{P a}{L}(L-x)-M=0 \\
M=\frac{P a}{L}(L-x)
\end{gathered}
$$

Ans.

Ans.

Ans.

Ans.

$$
A_{y}=\frac{P b}{L}
$$

4-13. Determine the shear and moment in the floor girder as a function of x. Assume the support at A is a pin and B is a roller.

Support Reactions: Referring to the FBD of the entire beam in Fig. a.

$$
\begin{array}{ll}
C+\sum M_{A}=0 ; & B_{y}(4)-4(1)-6(3)=0 \\
& B_{y}=5.50 \mathrm{kN} \\
\varsigma+\sum M_{B}=0 ; & 6(1)+4(3)-A_{y}(4)=0 \\
& A_{y}=4.50 \mathrm{kN} \\
\xrightarrow{+} \sum F_{x}=0 ; & A_{x}=0
\end{array}
$$

Internal Loadings: For $0 \leq x<1 \mathrm{~m}$, Referring to the FBD of the left segment of the beam in Fig. b,

$$
\begin{array}{ll}
+\uparrow \sum F_{y}=0 ; & 4.50-V=0 \quad V=4.50 \mathrm{kN} \\
\varsigma+\sum M_{O}=0 ; & M-4.50 x=0 \\
& M=\{4.50 x\} \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

For $1 \mathrm{~m}<x<3 \mathrm{~m}$, referring to the FBD of the left segment of the beam in Fig. c,

$$
+\uparrow \sum F_{y}=0 ; \quad 4.50-4-V=0
$$

$$
V=0.500 \mathrm{kN}
$$

$$
\begin{gathered}
C+\sum M_{O}=0 ; \quad M+4(x-1)-4.50 x=0 \\
M=\{0.5 x+4\} \mathrm{kN} \cdot \mathrm{~m}
\end{gathered}
$$

For $3 \mathrm{~m}<x \leq 4 \mathrm{~m}$, referring to the FBD of the right segment of the beam in Fig. d,

$$
\begin{array}{cc}
+\uparrow \sum F_{y}=0 ; & V+5.50=0 \quad V=-5.50 \mathrm{kN} \\
\varsigma+\sum M_{O}=0 ; & 5.50(4-x)-M=0 \\
& M=\{-5.50 x+22\} \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Ans.

(a)

Ans.

Ans.

Ans.

Ans.

Ans.

4-14. Determine the shear and moment throughout the beam as a function of x.

Support Reactions: Referring to the FBD of the entire beam in Fig. a
$\xrightarrow{+} \sum F_{x}=0 ; \quad A_{x}=0$
$\zeta+\sum M_{A}=0 ; \quad M_{O}-N_{B}(L)=0 \quad B_{y}=\frac{M_{O}}{L}$
$\varsigma+\sum M_{B}=0 ; \quad M_{O}-A_{y}(L)=0 \quad A_{y}=\frac{M_{O}}{L}$
Internal Loadings: For $0 \leq x<a$, refer to the FBD of the left segment of the beam is Fig. b.

$$
\begin{array}{rll}
+\uparrow \sum F_{y}=0 ; & \frac{M_{O}}{L}-V=0 & V=\frac{M_{O}}{L} \\
\zeta+\sum M_{o}=0 ; & M-\frac{M_{o}}{L} x=0 & M=\frac{M_{O}}{L} x
\end{array}
$$

For $a<x \leq L$, refer to the FBD of the right segment of the beam in Fig. c

$$
\begin{array}{lll}
+\uparrow \sum F_{y}=0 ; & V-\frac{M_{O}}{L}=0 & V=\frac{M_{O}}{L} \\
\varsigma+\sum M_{o}=0 ; & -M-\frac{M_{o}}{L}(L-x)=0 \\
& M=-\frac{M_{o}}{L}(L-x)
\end{array}
$$

Ans.
Ans.

Ans.

Ans.

(c)

4-15. Determine the shear and moment throughout the beam as a function of x.

Reaction at A :
$\xrightarrow{+} \sum F_{x}=0 ;$
$A_{x}=0$
$C+\sum M_{B}=0 ;$
$A_{y}(8)-7(6)+12=0 ; A_{y}=3.75 \mathrm{kN}$
$0 \leq x<2 \mathrm{~m}$
$+\uparrow \sum F_{y}=0 ;$
$3.75-V=0 ;$
$V=3.75 \mathrm{kN}$
C $+\sum M=0 ;$
$3.75 x-M=0 ;$
$M=3.75 x \mathrm{kN}$
$2 \mathrm{~m}<x<4 \mathrm{~m}$

Segment:
$+\uparrow \sum F_{y}=0 ;$
$-V+3.75-7=0 ; \quad V=-3.25$
$C+\sum M=0 ;$
$-M+3.75 x-7(x-2)=0 ;$

$$
M=-3.25 x+14
$$

$4 \mathrm{~m}<x \leq 8 \mathrm{~m}$
$+\uparrow \sum F_{y}=0 ;$
$3.75-7-V=0 ; \quad V=-3.25 \mathrm{kN}$
$\zeta+\sum M=0 ;$
$-3.75 x+7(x-2)-12+M=0 ;$

$$
M=26-3.25 x
$$

Ans.
Ans.

Ans.

Ans.

Ans.

Ans.
*4-16. Determine the shear and moment throughout the beam as a function of x.

Support Reactions. Referring to the FBD of the entire beam in Fig. a,

$$
\begin{array}{ll}
\varsigma+\sum M_{A}=0 ; & B_{y}(6)-8(3)(4.5)-\frac{1}{2}(8)(3)(2)=0 \\
& B_{y}=22 \mathrm{kN} \\
\mathrm{C}+\sum M_{B}=0 ; & 8(3)(1.5)+\frac{1}{2}(8)(3)(4)-A_{y}(6)=0 \\
& A_{y}=14 \mathrm{kN} \\
\xrightarrow{+} \sum F_{x}=0 ; & A_{x}=0
\end{array}
$$

Internal Loadings: For $0 \leq x<3 \mathrm{~m}$, refer to the FBD of the left segment of the beam in Fig. b,

$$
\begin{aligned}
+\uparrow \sum F_{y}=0 ; & 14-\frac{1}{2}\left(\frac{8}{3} x\right) x-V=0 \\
& V=\left\{-1.33 x^{2}+14\right\} \mathrm{kN}
\end{aligned}
$$

Ans.

$$
C+\sum M_{O}=0 ; \quad M+\frac{1}{2}\left(\frac{8}{3} x\right)(x)\left(\frac{x}{3}\right)-14 x=0
$$

$$
M=\left\{-0.444 x^{3}+14 x\right\} \mathrm{kN} \cdot \mathrm{~m}
$$

Ans. $\quad \frac{1}{2}\left(\frac{8}{3} x\right) x$

For $3 \mathrm{~m}<x \leq 6 \mathrm{~m}$, refer to the FBD of the right segment of the beam in Fig. c

$$
+\uparrow \sum F_{y}=0 ; \quad V+22-8(6-x)=0
$$

$$
V=\{-8 x+26\} \mathrm{kN}
$$

$$
\zeta+\sum M_{O}=0 ; \quad 22(6-x)-8(6-x)\left(\frac{6-x}{2}\right)-M=0
$$

$$
M=\left\{-4 x^{2}+26 x-12\right\} \mathrm{kN} \cdot \mathrm{~m}
$$

Ans.

4-17. Determine the shear and moment throughout the beam as a function of x.

Internal Loadings. For $0 \leq x \leq 1 \mathrm{~m}$, referring to the FBD of the left segment of the beam in Fig. a,

$$
\begin{array}{lll}
+\uparrow \sum F_{y}=0 ; & -V-4=0 & V=-4 \mathrm{kN} \\
\varsigma+\sum M_{O}=0 ; & M+4 x=0 & M=\{-4 x\} \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Ans.

Ans.

For $1 \mathrm{~m}<x<2 \mathrm{~m}$, referring to the FBD of the left segment of the beam in Fig. b,

$$
+\uparrow \sum F_{y}=0 ; \quad-4-8-V=0 \quad V=\{-12\} \mathrm{kN} \cdot \mathrm{~m}
$$

Ans.

(a)
$\zeta+\sum M_{O}=0 ; \quad M+8(x-1)+4 x=0$
$M=\{-12 x+8\} \mathrm{kN} \cdot \mathrm{m}$
Ans.

For $2 \mathrm{~m}<x \leq 3 \mathrm{~m}$, referring to the FBD of the left segment of the beam in Fig. c,

$$
\begin{array}{ll}
+\uparrow \sum F_{y}=0 ; & -4-8-8-V=0 \quad V=\{-20\} \mathrm{kN} \\
\varsigma+\sum M_{O}=0 ; & M+4 x+8(x-1)+8(x-2)=0 \\
& M=\{-20 x+24\} \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Ans.

4-18. Determine the shear and moment throughout the beam as functions of x.

Support Reactions: As shown on FBD.

Shear and Moment Functions:

For $0 \leq x<6 \mathrm{ft}$

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad 30.0-2 x-V=0 \\
V=\{30.0-2 x\} \mathrm{k} \\
C+\sum M_{N A}=0 ; \quad M+216+2 x\left(\frac{x}{2}\right)-30.0 x=0 \\
M=\left\{-x^{2}+30.0 x-216\right\} \mathrm{k} \cdot \mathrm{ft}
\end{gathered}
$$

For $6 \mathrm{ft}<x \leq 10 \mathrm{ft}$
$\xrightarrow{+} \sum F_{y}=0 ; \quad V-8=0 \quad V=8.00 \mathrm{k}$

$$
\begin{aligned}
\mathrm{C}+\sum M_{N A}=0 ; & -M-8(10-x)-40=0 \\
& M=\{8.00 x-120\} \mathrm{k} \cdot \mathrm{ft}
\end{aligned}
$$

Ans.

Ans.

Ans.

Ans.

4-19. Determine the shear and moment throughout the beam as functions of x.

Support Reactions: As shown on FBD.

Shear and moment Functions:

For $0 \leq x<4 \mathrm{ft}$
$+\uparrow \sum F_{y}=0 ; \quad-250-V=0 \quad V=-250 \mathrm{lb}$
$\zeta+\sum M_{N A}=0 ; \quad M+250 x=0 \quad M=\{-250 x\} \mathrm{lb} \cdot \mathrm{ft}$

For $4 \mathrm{ft}<x<10 \mathrm{ft}$

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad-250+700-150(x-4)-V=0 \\
V=\{1050-150 x\} \mathrm{lb}
\end{gathered}
$$

$$
\varsigma+\sum M_{N A}=0 ; \quad M+150(x-4)\left(\frac{x-4}{2}\right)+250 x-700(x-4)=0
$$

Ans.

Ans.

Ans.

$$
M=\left\{-75 x^{2}+1050 x-4000\right\} \mathrm{lb} \cdot \mathrm{ft}
$$

For $10 \mathrm{ft}<x \leq 14 \mathrm{ft}$

$$
+\uparrow \sum F_{y}=0 ; \quad V-250=0 \quad V=250 \mathrm{lb}
$$

Ans.

$$
\zeta+\sum M_{N A}=0 ; \quad-M-250(14-x)=0
$$

$$
M=\{250 x-3500\} \mathrm{lb} \cdot \mathrm{ft}
$$

Ans.

*4-20. Determine the shear and moment in the beam as functions of x.

Support Reactions: As shown on FBD.

Shear and Moment Functions:

For $0 \leq x<L / 2$

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad \frac{3 w_{o} L}{4}-w_{o} x-V=0 \quad V=\frac{w_{o}}{4}(3 L-4 x) \\
\varsigma+\sum M_{N A}=0 ; \quad \frac{7 w_{o} L^{2}}{24}-\frac{3 w_{o} L}{4} x+w_{o} x\left(\frac{x}{2}\right)+M=0 \\
M=\frac{w_{o}}{24}\left(-12 x^{2}+18 L x-7 L^{2}\right)
\end{gathered}
$$

For $L / 2<x \leq L$

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad V-\frac{1}{2}\left[\frac{2 w_{o}}{L}(L-x)\right](L-x)=0 \\
V=\frac{w_{o}}{L}(L-x)^{2} \\
C+\sum M_{N A}=0 ; \quad-M-\frac{1}{2}\left[\frac{2 w_{o}}{L}(L-x)\right](L-x)\left(\frac{L-x}{3}\right)=0 \\
M=\frac{w_{o}}{3 L}(L-x)^{2}
\end{gathered}
$$

Ans.

Ans.

Ans.

4-21. Determine the shear and moment in the beam as a function of x.

Internal Loadings: Referring to the FBD of the left segment of the beam in Fig. a,

$$
\begin{array}{ll}
+\uparrow \sum F_{y}=0 ; & -800-\frac{1}{2}\left(\frac{200}{10} x\right)(x)-V=0 \\
V=\left\{-10 x^{2}-800\right\} \mathrm{lb} \\
C+\sum M_{o}=0 ; & M+\frac{1}{2}\left(\frac{200}{10} x\right)(x)\left(\frac{x}{3}\right)+800 x+1200=0 \\
M & =\left\{-3.33 x^{3}-800 x-1200\right\} \mathrm{lb} \cdot \mathrm{ft}
\end{array}
$$

Ans.

Ans.

(a)

4-22 Determine the shear and moment throughout the tapered beam as a function of x.

$$
\begin{gathered}
\xrightarrow{+} \sum F_{y}=0 ; \quad 36-\frac{1}{2}\left(\frac{8}{9} x\right)(x)-\frac{8}{9}\left(8-\frac{8}{9} x\right) x-V=0 \\
V=36-\frac{4}{9} x^{2}-8 x+\frac{8}{9} x^{2} \\
V=0.444 x^{2}-8 x+36
\end{gathered}
$$

$\zeta+\sum M=0 ; \quad 108+\frac{1}{2}\left(\frac{8}{9} x\right)(x)\left(\frac{2}{3} x\right)+\frac{8}{9}\left(8-\frac{8}{9} x\right)(x)\left(\frac{x}{2}\right)-36 x+M=0$

$$
\begin{aligned}
M & =-108-\frac{8}{27} x^{3}-4 x^{2}+\frac{8}{18} x^{3}+36 x \\
M & =0.148 x^{3}-4 x^{2}+36 x-108
\end{aligned}
$$

Ans.

4-23. Draw the shear and moment diagrams for the beam.

*4-24. Draw the shear and moment diagrams for the beam.

4-25. Draw the shear and moment diagrams for the beam.
$V_{\text {max }}=-4.89 \mathrm{kN}$
$M_{\text {max }}=-20 \mathrm{kN} \cdot \mathrm{m}$

$V_{\max }=-10.1 \mathrm{k}$
$M_{\max }=-60 \mathrm{k} \cdot \mathrm{ft}$

4-26. Draw the shear and moment diagrams of the beam.

Ans.

Ans.

Ans.

Ans.

4-27. Draw the shear and moment diagrams for the beam.

*4-28. Draw the shear and moment diagrams for the beam (a) in terms of the parameters shown; (b) set $M_{O}=$ $500 \mathrm{~N} \cdot \mathrm{~m}, L=8 \mathrm{~m}$.
(a) For $0 \leq x \leq \frac{L}{3} \quad 0$
$+\uparrow \sum F_{y}=0 ; \quad V=0$
$\zeta+\sum M=0 ; \quad M=0$

For $\left.\frac{L}{3}<x<\frac{2 L}{3} \quad 0 \underset{0}{\substack{\frac{L}{3}}}\right)^{m}$
$+\uparrow \sum F_{y}=0 ; \quad V=0$
$\zeta+\sum M=0 ; \quad M=M_{O}$

For $\frac{2 L}{3}<x \leq L^{m} \subset \xlongequal{V}_{\stackrel{V}{l-x}}^{\stackrel{l}{l}}$
$+\uparrow \sum F_{y}=0 ; \quad V=0$
$\zeta+\sum M=0 ; \quad M=0$

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

4-28. Continued

(b) Set $M_{O}=500 \mathrm{~N} \cdot \mathrm{~m}, L=8 \mathrm{~m}$

Ans.

Ans.

For $\frac{8}{3} m<x<\frac{16}{3} m$

$+\uparrow \sum F_{y}=0 ; \quad V=0$

C $+\sum M=0 ; \quad M=500 \mathrm{~N} \cdot \mathrm{~m}$

$+\uparrow \sum F_{y}=0 ; \quad V=0$
$\circlearrowright+\sum M=0 ; \quad M=0$

Ans.

Ans.

4-29. Draw the shear and moment diagrams for the beam.

Support Reactions:

$$
C+\sum M_{A}=0 ; \quad C_{x}(3)-1.5(2.5)=0 \quad C_{x}=1.25 \mathrm{kN}
$$

$$
+\uparrow \sum F_{y}=0 ; \quad A_{y}-1.5+1.25=0 \quad A_{y}=0.250 \mathrm{kN}
$$

Shear and Moment Functions: For $0 \leq x<2 \mathrm{~m}[$ FBD (a)],
$+\uparrow \sum F_{y}=0 ; \quad 0.250-V=0 \quad V=0.250 \mathrm{kN}$
$\varsigma+\sum M=0 ; \quad M-0.250 x=0 \quad M=(0.250 x) \mathrm{kN} \cdot \mathrm{m}$

For $2 \mathrm{~m}<x \leq 3 \mathrm{~m}[$ FBD (b) $]$.

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad 0.25-1.5(x-2)-V=0 \\
V=(3.25-1.50 x) \mathrm{kN} \\
\mathrm{C}+\sum M=0 ; \quad-0.25 x+1.5(x+2)\left(\frac{x-2}{2}\right)+M=0 \\
M=\left(-0.750 x^{2}+3.25 x-3.00\right) \mathrm{kN} \cdot \mathrm{~m}
\end{gathered}
$$

(a)

Ans.

Ans.

(b)

Ans.

$$
\begin{aligned}
& +\uparrow \sum F_{y}=0 ; \quad V=0 \\
& \circlearrowright+\sum M=0 ; \quad M=0
\end{aligned}
$$

4-30. Draw the shear and bending-moment diagrams for the beam.

Support Reactions:

$\varsigma+\sum M_{B}=0 ; \quad 1000(10)-200-A_{y}(20)=0 \quad A_{y}=490 \mathrm{lb}$

Shear and Moment Functions: For $0 \leq x<20 \mathrm{ft}[$ FBD (a)].

$$
\begin{array}{ll}
+\uparrow \sum F_{y}=0 ; & 490-50 x-V=0 \\
& V=\{490-50.0 x\} \mathrm{lb} \\
\varsigma+\sum M=0 ; & M+50 x\left(\frac{x}{2}\right)-490 x=0 \\
& M=\left(490 x-25.0 x^{2}\right) \mathrm{lb} \cdot \mathrm{ft}
\end{array}
$$

For $20 \mathrm{ft}<x \leq 30 \mathrm{ft}[$ FBD (b)],

$$
\begin{aligned}
& +\uparrow \sum F_{y}=0 ; \quad V=0 \\
& \varsigma+\sum M=0 ; \quad-200-M=0 \quad M=-200 \mathrm{lb} \cdot \mathrm{ft}
\end{aligned}
$$

Ans.

Ans.

Ans.

Ans.

(b)

4-31. Draw the shear and moment diagrams for the beam.

Support Reactions: From FBD(a),

$$
\begin{aligned}
& C+\sum M_{A}=0 ; \quad C_{y}(L)-\frac{w L}{2}\left(\frac{3 L}{4}\right)=0 \quad C_{y}=\frac{3 w L}{8} \\
& +\uparrow \sum F_{y}=0 ; \quad A_{y}+\frac{3 w L}{8}-\left(\frac{w L}{2}\right)=0 \quad A_{y}=\frac{w L}{8}
\end{aligned}
$$

Shear and Moment Functions: For $0 \leq x<\frac{L}{2}[$ FBD (b)],

$$
\begin{aligned}
& +\uparrow \sum F_{y}=0 ; \quad \frac{w L}{8}-V=0 \quad V=\frac{w L}{8} \\
& C+\sum M=0 ; \quad M-\frac{w L}{8}(x)=0 \quad M=\frac{w L}{8}(x)
\end{aligned}
$$

$$
\text { For } \frac{L}{2}<x \leq L[\operatorname{FBD}(\mathrm{c})],
$$

$$
+\uparrow \sum F_{y}=0 ; \quad V+\frac{3 w L}{8}-w(L-x)=0
$$

$$
V=\frac{w}{8}(5 L-8 x)
$$

$$
\zeta+\sum M_{B}=0 ; \quad \frac{3 w L}{8}(L-x)-w(L-x)\left(\frac{L-x}{2}\right)-M=0
$$

$$
M=\frac{w}{8}\left(-L^{2}+5 L x-4 x^{2}\right)
$$

Ans.

Ans.

(C)

Ans.
*4-32. Draw the shear and moment diagrams for the beam.

$\varsigma+\sum M_{A}=0 ; \quad-5000(10)-150+B_{y}(20)=0$

$$
B_{y}=2500 \mathrm{lb}
$$

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad A_{x}=0
$$

$+\uparrow \sum F_{y}=0 ; \quad A_{y}=5000+2500=0$

$$
A_{y}=2500 \mathrm{lb}
$$

For $0 \leq x \leq 20 \mathrm{ft}$

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad 2500-250 x-V=0 \\
V=250(10-x) \\
\varsigma+\sum M=0 ; \quad-2500(x)+150+250 x\left(\frac{x}{2}\right)+M=0 \\
M=25\left(100 x-5 x^{2}-6\right)
\end{gathered}
$$

Ans.

Ans.

4-33. Draw the shear and moment diagrams for the beam.

$$
0 \leq x<8
$$

$$
+\uparrow \sum F_{y}=0 ; \quad 133.75-40 x-V=0
$$

$$
V=133.75-40 x
$$

$$
\zeta+\sum M=0 ; \quad M+40 x\left(\frac{x}{2}\right)-133.75 x=0
$$

$$
M=133.75 x-20 x^{2}
$$

$$
8<x \leq 11
$$

$$
+\uparrow \sum F_{y}=0 ; \quad V-20=0
$$

$$
V=20
$$

$$
己+\sum M=0 ; \quad M+20(11-x)+150=0
$$

$$
M=20 x-370
$$

Ans.

Ans.

Ans.

Ans.

4-34. Draw the shear and moment diagrams for the beam.
$V_{\max }= \pm 1200 \mathrm{lb}$
$M_{\max }=6400 \mathrm{lb} \cdot \mathrm{ft}$

Ans.

Ans.

Ans.

Ans.

*4-36. Draw the shear and moment diagrams of the beam. Assume the support at B is a pin and A is a roller.
$V_{\text {max }}=850 \mathrm{lb}$
$M_{\text {max }}=-2.81 \mathrm{~K} \cdot \mathrm{ft}$

Ans.

Ans.

$M_{\max }=34.5 \mathrm{kN} \cdot \mathrm{m}$

4-37. Draw the shear and moment diagrams for the beam. Assume the support at B is a pin.

4-38. Draw the shear and moment diagrams for each of the three members of the frame. Assume the frame is pin connected at A, C, and D and there is fixed joint at B.

Mikatmi

4-39. Draw the shear and moment diagrams for each member of the frame. Assume the support at A is a pin and D is a roller.
$V_{\max }=-11.8 \mathrm{k}$
$M_{\max }=-87.6 \mathrm{k} \cdot \mathrm{ft}$

Ans.

Ans.

*4-40. Draw the shear and moment diagrams for each member of the frame. Assume A is a rocker, and D is pinned.

4-41. Draw the shear and moment diagrams for each member of the frame. Assume the frame is pin connected at B, C, and D and A is fixed.

Shear diagram

4-42. Draw the shear and moment diagrams for each member of the frame. Assume A is fixed, the joint at B is a pin, and support C is a roller.
$V_{\max }=20.0 \mathrm{k}$
$M_{\text {max }}=-144 \mathrm{k} \cdot \mathrm{ft}$

Ans.

Ans.

4-43. Draw the shear and moment diagrams for each member of the frame. Assume the frame is pin connected at A, and C is a roller.

*4-44. Draw the shear and moment diagrams for each member of the frame. Assume the frame is roller supported at A and pin supported at C.

4-45. Draw the shear and moment diagrams for each member of the frame. The members are pin connected at A, B, and C.

Support Reactions:

$$
\begin{gathered}
C+\sum M_{A}=0 ; \quad-15(2)-10(4)+B_{y}(6)=0 \\
B_{y}=11.667 \mathrm{kN} \\
+\uparrow \sum F_{y}=0 ; \quad A_{y}-25+11.667=0 \\
A_{y}=13.3 \mathrm{kN} \\
\\
C+\sum M_{c}=0 ; \quad 12(2)-B_{y^{\prime}}(6)=0 \\
B_{y^{\prime}}=4 \mathrm{kN} \\
+\nearrow \sum F_{y^{\prime}}=0 ; \quad 4-12+C_{y^{\prime}}=0 \\
C_{y^{\prime}}=8 \mathrm{kN}
\end{gathered}
$$

4-46. Draw the shear and moment diagrams for each member of the frame.

$$
\begin{gathered}
\varsigma+\sum M_{D}=0 ; \quad 10(2.5)+5(3)+10(5)+5(7)-A_{y}(10)=0 \\
A_{y}=12.5 \mathrm{kN} \\
\xrightarrow{+} \sum F_{x}=0 ; \quad-10\left(\frac{4}{5}\right)+D_{x}=0 \\
D_{x}=8 \mathrm{kN} \\
+\uparrow \sum F_{y}=0 ; \quad 12.5-5-10-5-10\left(\frac{3}{5}\right)+D_{y}=0 \\
D_{y}=13.5 \mathrm{kN}
\end{gathered}
$$

4-47. Draw the shear and moment diagrams for each member of the frame. Assume the joint at A is a pin and support C is a roller. The joint at B is fixed. The wind load is transferred to the members at the girts and purlins from the simply supported wall and roof segments.

Support Reactions:

$$
\begin{array}{cl}
\varsigma+\sum M_{A}=0 ; & -3.5(7)-1.75(14)-(4.20)\left(\sin 30^{\circ}\right)\left(7 \cos 30^{\circ}\right) \\
& -4.20\left(\sin 30^{\circ}\right)(14+3.5)+(21)=0 \\
& C_{x}=5.133 \mathrm{kN} \\
\xrightarrow[\rightarrow]{+} \sum F_{x}=0 ; & 1.75+3.5+1.75+4.20 \sin 30^{\circ}-5.133-A_{x}=0 \\
& A_{x}=3.967 \mathrm{kN} \\
+\uparrow \sum F_{y}=0 ; & A_{y}-4.20 \cos 30^{\circ}=0 \\
& A_{y}=3.64 \mathrm{kN}
\end{array}
$$

*4-48. Draw the shear and moment diagrams for each member of the frame. The joints at A, B and C are pin connected.

4-49. Draw the shear and moment diagrams for each of the three members of the frame. Assume the frame is pin connected at B, C and D and A is fixed.

k_{k} Nan_ ψ_{k}

$B C$

HIC

4-50. Draw the moment diagrams for the beam using the method of superposition. The beam is cantilevered from A.

4-51. Draw the moment diagrams for the beam using the method of superposition.

*4-52. Draw the moment diagrams for the beam using the method of superposition. Consider the beam to be cantilevered from end A.

4-53. Draw the moment diagrams for the beam using the method of superposition. Consider the beam to be simply supported at A and B as shown.

4-54. Draw the moment diagrams for the beam using the method of superposition. Consider the beam to be cantilevered from the pin support at A.

$M(k N \cdot m)$

4-54. Continued

4-55. Draw the moment diagrams for the beam using the method of superposition. Consider the beam to be cantilevered from the rocker at B.

*4-56. Draw the moment diagrams for the beam using the method of superposition. Consider the beam to be cantilevered from end C.

$M(K N \cdot m)$

4-57. Draw the moment diagrams for the beam using the method of superposition. Consider the beam to be simply supported at A and B as shown.

